Primary Decomposition and Associated Primes

ثبت نشده
چکیده

If N is a submodule of the R-module M , and a ∈ R, let λa : M/N → M/N be multiplication by a. We say that N is a primary submodule of M if N is proper and for every a, λa is either injective or nilpotent. Injectivity means that for all x ∈ M , we have ax ∈ N ⇒ x ∈ N . Nilpotence means that for some positive integer n, aM ⊆ N , that is, a belongs to the annihilator of M/N , denoted by ann(M/N). Equivalently, a belongs to the radical of the annihilator of M/N , denoted by rM (N). Note that λa cannot be both injective and nilpotent. If so, nilpotence gives aM = a(an−1M) ⊆ N , and injectivity gives an−1M ⊆ N . Inductively, M ⊆ N , so M = N , contradicting the assumption that N is proper. Thus if N is a primary submodule of M , then rM (N) is the set of all a ∈ R such that λa is not injective. Since rM (N) is the radical of an ideal, it is an ideal of R, and in fact it is a prime ideal. For if λa and λb are injective, so is λab = λa ◦ λb. (Note that rM (N) is proper because λ1 is injective.) If P = rM (N), we say that N is P -primary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irena Swanson

1. Primary ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Primary modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. Primary decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4. More ways to get associated primes . . . . . . . . . . . . . . . . . . . . . . . 12 5. Witnesses . . . . . . . . . . . . . . . . . . ...

متن کامل

Irena Swanson Primary decompositions

Table of contents 1. Primary ideals 1 2. Primary modules 3 3. Primary decompositions 6 4. More ways to get associated primes 11 5. Witnesses 14 6. Canonical primary decomposition 17 7. Associated primes of powers of an ideal 18 8. Primary decompositions of powers of an ideal 20 9. An algorithm for computing primary decompositions 24 10. Complexity of associated primes 28 11. Exercises 31 Biblio...

متن کامل

An Algorithm to Compute a Primary Decomposition of Modules in Polynomial Rings over the Integers

We present an algorithm to compute the primary decomposition of a submodule N of the free module Z[x1, . . . , xn]. For this purpose we use algorithms for primary decomposition of ideals in the polynomial ring over the integers. The idea is to compute first the minimal associated primes of N , i.e. the minimal associated primes of the ideal Ann(Z[x1, . . . , xn]/N ) in Z[x1, . . . , xn] and the...

متن کامل

Associated Primes and Primary Decomposition

These notes are an attempt to unify the presentations of associated primes and primary decomposition given by Atiyah-Macdonald [1], Bourbaki [2], and Matsumura [3]. Their definitions differ somewhat, and we hope that the ways in which we have chosen to highlight these differences will lead to the reader having a greater understanding of the important concepts described herein. The differing def...

متن کامل

Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

Let  $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if  $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $R=K[x_1,ld...

متن کامل

The Vertex Ideal of a Lattice

We introduce a monomial ideal whose standard monomials encode the vertices of all fibers of a lattice. We study the minimal generators, the radical, the associated primes and the primary decomposition of this ideal, as well as its relation to initial ideals of lattice ideals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009